DIN 18032 Part II Basics: What are these Contraptions?

By Paul W. Elliott, Ph.D., P.E.

The following presentation was given at the 2004 MFMA Meeting in Phoenix Arizona

Animations included in the original presentation have been deleted to reduce file size

Additional Information

- Additional Information is available at <u>www.asetservices.com</u>
 - A supporting document DIN-001 is also available at

www.asetservices.com/info_links.html

Video demonstrations are also available at <u>www.asetservices.com/equipment.html</u>

Speaker Background

- Graduated with PhD in Engineering from Purdue in 1997
- Worked for Robbins Sports Surfaces as research engineer until 2001
- Became licensed engineer in Ohio in 2002
- Founded ASET Services in March of 2002

Topics

- Ball Rebound Overview and Video
- Force Reduction Overview and Video
- Vertical Deflection Overview and Video
- Area Indentation Overview and Video
- Purpose and Use In Specifications

Topics

- Performance requirements
- Limitations and Alternatives
- □ If time permits
 - Rolling Load Overview
 - Surface Friction Overview
 - A few more video clips

Disclaimers

- This presentation is based on the best information available at the time of development
- It represents the opinion of the author, but other interpretations may be equally valid
- Not intended as a complete review of all of the topics included in this presentation

Presentation Limits

- Focus on Area Elastic Sports Surfaces
 - Point Elastic, and Combination systems have slightly different requirements
- Referenced foreign standards include some translations, and have been verified to the extent possible

The MFMA and DIN

The MFMA's DIN Position

- Accepts all parameters as desirable
- Not a blanket endorsement of DIN
 - Some situations may be better served by floor systems that fail to meet some or even all of the parameters of the DIN standard

Overview of DIN 18032 Part II

- **□** 1965
 - First edition of 18032
 - No floor testing section
- **□** 1975
 - First requirements were set
 - But equipment was quite different than today
- **1978**
 - Force reduction was standardized

Overview of DIN 18032 Part II

- **1986**
 - DIN complete 18032-2 issued
- **Since 1986**
 - Changes and clarifications have been made
 - But test methods have remained similar throughout the revisions

Overview of DIN 18032 Part II

- Provides a method of quantitatively comparing sports surfaces
- Establishes performance requirements to ensure that each community is getting a sports surface of similar quality

- Provides an indication of the 'playability' of the sports surface
- Measures how well the ball rebounds off of the sports surface compared to a rebound on a concrete

What does it look like?

Typical features

- Mechanical Release
- Adjustable height
- **Stable Base**

Mechanical Release

- Drops without spin
- Improves repeatability
- Magnetic,
 Mechanical (hook),
 or Vacuum

- How is the height measured?
 - Most common method is acoustical determination of impact times
 - **\Box** Find the time between the 1st and the 2nd impacts (Δt)
 - Using physics and the time between impact the height can be calculated

$$H(m) = \frac{9.81}{8} (\Delta t)^2 + .245$$

Equation Used To Calculate

$$BR = \left(\frac{H_{floor}}{H_{con}}\right) 100$$

Example
$$BR = \frac{1.35m}{1.48m} 100 = \frac{4.45\,ft}{4.88\,ft} 100 = 91\%$$

Force Reduction – DIN

- Provides an indication of the 'resilience' or 'cushioning' of the sports surface
- Impact duration is approximately 20 ms (0.02 sec)
 - Compares to the 'passive' peak during landing where peak force occurs approximately ~ 10 ms after contact
 - Called passive because the body can not actively respond to the input in this time

- Force reduction is represents the degree to which the sports surface reduces impact forces produced on a 'rigid surface'
 - A rigid surface is defined in the standard as a 10 mm (~7/16 in) thick steel plate attached to a 200 mm (~8 in) thick concrete slab
 - Because of this definition, the baseline cannot be determined onsite
 - **Concrete often has a force reduction of 1 to 2%**

Test Overview

- A 20 kg (44 lbs) drop mass is dropped from a height of 55 mm (~2-1/8 in)
- Weight impacts a 2000 N/mm (11,420 lb/in) spring
- Impact force is measured directly using a load cell

- Sports surface
 - Weight "impacts" surface ~3 times

Copyright 2004 All Rights Reserved

Force Reduction – DIN

Equation Used To Calculate

$$FR(\%) = \left(1 - \left(\frac{F_{floor}}{F_{rigid}}\right)\right) 100$$

Example

$$FR = \left(1 - \left(\frac{500lbs}{1500lbs}\right)\right) 100 = 66\%$$

Masonite

 Weight "impacts" ~ 10 times

Copyright 2004 All Rights Reserved

Impact Force Curves

- Provides an indication of how much the floor can move
- The impact simulates a running stride, or the active phase of a landing
- The result indicates how much the floor would be expected to deflect under a 1500 N (336 lbs) load

- Requires the measurement of the force generated during impact (*F_{def}*)
- □ Requires the measurement of the deflection at the point of impact (d_0)

Test Overview

- A 20 kg (44 lbs) drop mass is dropped from a height of 120 mm (~4-3/4 in)
- Weight impacts a 40 N/mm (230 lb/in) spring
- Impact force is measured directly using a loadload cell
- The Deflection at impact is measured using LVDT's (Linear Velocity-Displacement Transducers)

□ In action

Copyright 2004 All Rights Reserved

Equation used to calculate

$$StVv(mm) = \left(\frac{d_{max}}{F_{def}}\right) 1500 = \left(\frac{1}{k}\right) 1500$$

Example
$$StVv = \left(\frac{2.52mm}{1484}\right) 1500 = 2.55mm$$

- Provides an Indication of what?
 - How much mass is put in motion?
 - **Somewhat, but not universal**
 - How well vibrations are transmitted through the floor
 - Very much related to 'damping' properties of the system
- Uses the same test setup as Vertical Deflection

- Reports the amount of deflection that occurs 500 mm (~20 inches) from the point of impact as a % of the vertical deflection
 - Requires vertical deflection (StVv)
 - Requires deflection Parallel to the maple 500 mm from the impact point (*f*_{para})
 - Requires deflection Perpendicular to the maple 500 mm from the impact point (*f_{perp}*)

Test Overview

- The vertical deflection for the point or drop is calculated
- The maximum deflections 500 mm from the impact parallel and perpendicular to the maple are measured using an LVDT
- These values are then used to compute the Area Indentation

Components

Copyright 2004 All Rights Reserved

Equation used to calculate

$$\overline{AI}(\%) = \left(\frac{f_{perp} + f_{para}}{2*StVv}\right) 100$$

Example

$$\overline{AI}(\%) = \left(\frac{0.256mm + 0.456mm}{2*2.54mm}\right) 100 = \left(\frac{0.356mm}{2.54mm}\right) 100 = 14\%$$

Copyright 2004 All Rights Reserved

Copyright 2004 All Rights Reserved

Requirements

- Ball Rebound
 - Greater than 90%
- Force Reduction
 - Greater than 53%
- Vertical Deflection
 - Greater than 2.3 mm (0.09 inches)
- Area Indentation
 - Less than 15%

- Ensure that all facilities in Germany have sports halls that meet minimum requirements
 - Suitability testing is mandatory
 - Field test certification more common than not

North America Is Not Germany

North American DIN Realities

- Suitability Testing is Voluntary
- **Field certification is rare**
- Results are primarily a marketing tool
 - DIN Certified
 - DIN Rated
 - DIN Tested
- The MFMA could serve a valuable roll by developing definitions

□ Are all DIN floors equivalent?

- Section 4.1.3 "A careful consideration of the priorities of the hall is necessary to decide which construction will meet best the requirements in individual use"
 - Within Germany all DIN floors are not considered equal in all facilities

Using results in job specifications

- Specifying more stringent performance levels in key areas ok
 - Examples:
 - Greater than 95% ball rebound
 - **Greater than 60% force reduction**

Over specification may be problematic

Example:

- 95% ball rebound
- □ 61% force reduction
- **2.6 mm vertical deflection**
- 12% Area Indentation

Possible problems

- Setting the owners expectations too high
- Limiting the field-tested performance that would be accepted

Limitations and Alternatives

- There are some significant limitations in the standards discussed so far
- Often there are alternative tests or views that might be of interest

DIN Ball Rebound field testing for dead-spots

- Have to test concrete on-site
 - Not always possible
- Can only reference concrete

Alternative

ASTM F-2117 Ball Rebound test

Allows any reference surface

- Can use owner selected reference points to as baseline
 - Measure problem points and random points
 - Look for deviations in results

Alternative

□ ASTM F-2117 – Continued

Advantages

- Allows comparison to the rest of the floor not to concrete
- Disadvantage
 - Not as widely known in the industry

Area Indentation Examples

Area Indentation

- How much difference between pass and fail in the previous slide
 - 0.05 mm (0.002 inches)
 - Difference between passing and failing can be as small as 0.025 mm or 0.001 inches

Alternatives

Allow Area Indentations up to 20%

Norway, Austria

Do not measure Area Indentation

Czech Republic, Great Britain, France

GB & France adopted standards very different from DIN-18032 Part II

Questions

If you're looking for more information on this topic, visit

www.asetservices.com

Thanks

- Dan Heney for technical information
- Hans Knauf for some historic information on the development of the standard
- **To the MFMA for inviting me**
- **To you for your attention**